

Supporting Online Material for

Mesoscale Iron Enrichment Experiments 1993–2005:

Synthesis and Future Directions

P. W. Boyd,* T. Jickells, C. S. Law, S. Blain, E. A. Boyle, K. O. Buesseler, K. H. Coale, J. J. Cullen, H. J. W. de Baar, M. Follows, M. Harvey, C. Lancelot, M. Levasseur, N. J. P. Owens, R. Pollard, R. B. Rivkin, J. Sarmiento, V. Schoemann, V. Smetacek, S. Takeda, A. Tsuda, S. Turner, A. J. Watson

*To whom correspondence should be addressed. E-mail: pboyd@alkali.otago.ac.nz

Published 2 February 2007, *Science* **315**, 612 (2007) DOI: 10.1126/science.1131669

This PDF file includes:

Tables S1 to S3

References

Electronic Table captions

Table 1 A summary of the initial conditions for each FeAX. Mean mixed-layer concentrations are given for nutrients, POC, DOC, chlorophyll and grazer stocks. Dom. Phyto. denotes the dominant phytoplankton group. F_v/F_m is algal photosynthetic competence and is dimensionless. # denotes that different microzooplankton groups were sometime included under the term microzoo. biomass. Green denotes green algae. + denotes an estimate of POC derived from algal C only. Blank cells indicate that no data are presently available.

Table 2 A summary of the responses of key components of the pelagic foodweb during FeAX's. *d*BB denotes (maximum bacterial biomass/initial), BP is bacterial production, Mic is microzooplankton, Meso is mesozooplankton, G is grazing rate and B is biomass. Microzooplankton and mesozooplankton grazing rates are based on mortality and ingestion rate, respectively. The terms floristic and faunistic shift denote a significant change in the phytoplankton and microzooplankton community structure, respectively. HNan denotes heterotrophic nanoflagellates, HCil denotes heterotrophic ciliates and HDino denotes heterotrophic dinoflagellates. Cyano is cyanobacteria, hapto is haptophyte, and * denotes some temporal variability in changes in algal stocks. Algal growth/dilution is calculated from ((net algal growth+ dilution rate)/ dilution rate). nc denotes no significant change (relative to the surrounding HNLC waters). The ratio of maximum to minimum primary production is based on column integrals. Blank cells indicate that no data are presently available.

Table 3 A summary of observed biogeochemical signals during FeAX's. Si upt/Si inv = ratio of mixed-layer silicate uptake / mixed-layer silicate inventory, nc denotes no significant change (relative to surrounding HNLC waters), nm denotes not measured. ** denotes that supply of silicate due to dilution of the patch doubled the initial upper water column inventory of silicate (*50*). & denotes an initial increase in DMS concentration followed by a decline by the end of the study, # denotes increase in nitrous oxide was at the base of the mixed-layer only. FeBL production denotes the onset of increases in FeBL concentrations.

Property	IronEX I	IronEX II (29)	SOIREE	EisenEx (48)	SEEDS I	SOFEX S (50.	SOFEX N (50)	EIFEX (45)	SERIES	SEEDS	SAGE (51)	FeeP (51)
	(6)		()	(10)	()	56)		(10)	(20)		(01)	(02)
Temp. (C)	23	25	2	3-4	11	-1	5	4-5	13	9-12	10.5	20.7
MLD (m)	35	25	65	40	13	35	45	100	10	30	70	30-40
NO ₃ (mmol/ m3)	11	11	25	22	18	28	22	25	11		600	<10 nM
Si (mmol/m3)	4	6	8	10	34	62	3	19	14		50	
PO ₄ (mmol/ m3)	0.9		1.9	1.6				1.8	1.1		48	~10 nM
DFe (nmol/l)	0.07	0.08	0.1	0.1	0.04	0.1	0.09	0.08-0.2	0.08		0.09	0.25
F _v /F _m (max)	0.31 (0.60)	0.24 (0.57)	0.22 (0.65)	0.25 (0.55)	0.19 (0.31)	0.25 (0.65)	0.20 (0.52)	0.3 (0.57)	0.24 (0.5)		0.27 (0.31)	
Chlorophyll t=0 (max) (mg/m3)	0.2 (0.6)	0.2 (3.3)	0.2 (2.3)	0.5 (2.8)	0.9 (23.0)	0.2 (2.5)	0.3 (2.4)	0.6 (3.0)	0.4 (5.5)	0.8 (2.4)	0.4 (0.8)	0.06 (0.07)
POC (mmol/m3)	1.5+	2.5+	3	6	12	5	2	8	6		4	
DOC (mmol/m3)				47	54				50			
Dom. phyto	cyano	cyano	Pico euks	diatoms	Green/ pennates	diatoms	flagellates	diatoms	cyano	mixed	cyano	cyano
Het bact # (x 10^5 /ml)		9.5	3.7	4.0	2.5	4	4		3.5			
Microzoo. (µg/L)		1.9	11.3	8.3	16.0			6.0	4.8			
Mesozoo. (mg C/m3)		4.0	2.1		10.1							

Boyd et al. Electronic Supplementary Table 1

Property	IronEX	IronEX	SOIREE	EisenEx	SEEDS	SOFEX	SOFEX	EIFEX	SERIES	SEEDS	SAGE	FeeP
	Ι	II (29)	(47)	(48)	I (49)	S (50,	N (50)	(45)	(16)	II (51)	(51)	(51)
	(6)					56)						
dBB		1.6	1.6	1.6	2.7	1.8	2.1		10.6		nc	
(max./initial)												
dBP		3	3	2 to 3		2	4		14.9		nc	
dMicB	1.5	10.3	2.6	2.2	1.7			1.7	11.9			
dMicG		3-4	7					1.5				
Floristic shift	Cyano	Cyano	Pico-euks	nc	Green	nc	Flags to	nc	Cyano to	more	nc	nc
	to	to	to		algae to		diatoms		diatoms	diatoms		
	diatoms	diatoms	diatoms		centrics							
Faunistic shift	nc	HNan to	HNan to		HNan							
		HCil	HCil		to							
					HDino							
dMesoB	nm	3	nc		nc				increased			
(max./initial)												
dMesoG	nm	2-3	nc		18							nm
<i>d</i> cyanoB		2*	3*									
dhaptoB		4*	6*									
<i>d</i> diatomB		100	10	5.1	50			2.9				
Prim Prod	4	6	9	4	4	6	10	2	10		2	
Max/min												
Algal net	0.40	0.90	0.15	0.20	0.60	0.15	0.10	< 0.10	0.40		0	0
growth (max,												
per day)												
Algal	2.5	10.0	3.0	1.5-6.1	14.0	2.8	2.1		3.5-6.7			
growth/dilution												

Electronic Supplementary Table 2

Property	IronEX	IronEX	SOIREE	EisenEx	SEEDS	SOFEX	SOFEX	EIFEX	SERIES	SEEDS	SAGE	FeeP
	I	II (29)	(47)	(48)	I (49)	S (50, 56)	N (50)	(45)	(16)	II (51)	(51)	(51)
	(6)											
dChla	0.3	2.5	1.8	2.5	>22	2.5	2.2	2.3	5.1	1.6	0.4	nc
(mg m3)												
dPOC	1.5	8.5	30	10	75	10	15	7	15		nc	
(mmol/m3)												
dDOC	nm	nm	nm		3				<1		nm	nm
(mmol/m3)												
C:chla		150 (65)	90 (30)		230			180 (60)	135 (40)		nc	
T=0 (final)					(68)							
NO ₃ upt/N	nc	0.35	0.3		0.8	< 0.2	0.2		0.65			
inventory												
Si upt/Si	nc	0.8	0.45		0.9	< 0.1	>1**		0.95			
inventory												
PO ₄ upt/P	nc		0.1									
inventory												
dDIC	6	26	17	14	58	21	13		36		nc	
(mmol/m3)												
dDMS	0.8	1.8	2.9	1.3 then	nc	Not			8.5 then	nc	nc	
(µmol/m3)				to 0&		measured			to -5.7&			
dCH ₄	nm	nm	nm	nc					nc			
(nmol/l)												
dN ₂ O	nm	nm	0.8#	nm			nc	nc		nc	nc	nm
(nmol/l)												
Export	nm	7	nc	nc	nc	3	increase	increase	2		nc	nm
(max/initial)												
Atm. CO ₂	nc	6	2	3	5	3	3				nc	
drawdown												
(mmol/m2/d)												
Timing of	nm	2	11	2 and 10	nc				nc		nm	nm
FeBL prod												

(d) (d)							
	(d)						

Electroni Additiona	c Supplementary Table 3 al References – for Supplementary Tables
S-Table I	
IronEX I	K. Coale, et al., Deep-Sea Res. II, 45 , 919 , (1998)
HOHEA H	W.P. Cochlan Limnol Oceangr. $46.428.(2001)$
SOIREE	V_{11} . Coenian, Emmon. Oceanigr., 40, 420, (2001) I. Zeldis, Deen-Sea Res. II. 48, 2615, (2001)
SOIRLE	I A Hall K Safi Deen-Sea Res II 48 2591 (2001)
EisenEx	J.M. Arrieta, et al., Limnol, Oceangr., 49, 799, (2004)
SOFEX	J.L. Oliver, et al., Limnol. Oceangr., 49, 2129, (2004)
	-
S-Table 2	
IronEX II	M. Landry, et al. Mar. Ecol. Prog. Ser., 201, 57, (2000)
	M.R. Landry, et al. Mar. Ecol. Prog. Ser., 201, 27, (2000)
COIDEE	G.C. Rollwagen Bollens, M.R. Landry, Mar. Ecol. Prog. Ser., 201, 43, (2000)
SOIREE	J. Zeldis, Deep-Sea Res. II, 48, 2015, (2001) LA Hall K. Safi Daar Saa Daa H. 48, 2501 (2001)
EiconEv	J.A. Hall, K. Sall, Deep-Sea Res. II, $46, 2391, (2001)$
SOFEY	J.M. Afficia, et al., Elimitol. Ocean gr , 49, 799, (2004)
Dilution	C S Law et al. L Geophys Res Oceans 108 3272 / /10 1029/2002 IC001604 (2003)
Difution	C.S. Law, et al., J. Geophys.Res. Occans, 100, 5272,7710.1027/20023C001004, (2003)
S-Table 3	
IronEx I	K. Coale, et al., Deep-Sea Res. II, 45, 919, (1998)
IronEx II	E.L. Rue, K.W. Bruland, Limnol. Oceangr., 42, 901, (1997)
	R.R. Bidigare, Paleoceanography, 14, 589, (1999)
	W.P. Cochlan, Limnol. Oceangr., 46, 428, (2001)
SOIREE	C.S. Law and R. Ling, Deep-Sea Res. II, 48, 2509, (2001)
	P.L. Croot, et al., Geophys. Res. Lett., 28, 3425, (2001)
EisenEX	M.L. Boye, et al. Mar. Chem., 96, 257, (2005)
DMS	S.M. Turner, et al., Geophys. Res. Lett., 31, L1430/, doi:10/1029/GL020296.
SOFEX	J.K.B. Bisnop, et al., Science, 304, 417, (2004)

O.W. Wingenter, et al., PNAS, 101, 8537, (2004)